

Synthetic Methods

DOI: 10.1002/anie.200900892

Nickel-Catalyzed Formation of a Carbon–Nitrogen Bond at the β Position of Saturated Ketones**

Satoshi Ueno,* Ryosuke Shimizu, and Ryoichi Kuwano*

Ketone carbonyl groups can undergo a range of reactions at different sites. The positive carbonyl carbon center functions as an electrophile, whereas the α position undergoes deprotonation in the presence of a base to act as a nucleophile. However, bond formation on the β -carbon atom of saturated ketones still remains unexplored. Herein, we describe a new catalytic formation of a carbon-nitrogen bond at the β position of alkyl ketones in the presence of a nickel complex.

Miura and co-workers reported that propiophenone couples with bromobenzene at its β position, as well as at its α position, [2b] in the presence of a base and a palladium complex. The catalytic process involves the oxidation of the α -phenylated propiophenone by using a combination of the halobenzene and the palladium catalyst, to give the corresponding α,β -unsaturated ketone through a similar pathway to that of Saegusa–Ito oxidation. The α,β -unsaturated ketone undergoes a Mizoroki–Heck reaction to form the carbon–carbon bond at the β position. We envisioned that selective bond-formation on the β -carbon atom of ethyl ketones would be achieved if the oxidation with halobenzene proceeded without α arylation. This hypothesis inspired us to investigate the reaction of propiophenone (1a; see Table 1) with a nucleophile in the presence of a metal catalyst and a halobenzene.

A nickel catalyst was chosen as our candidate because nickel complexes are generally less active than palladium complexes in the catalytic α arylation of ketones. ^[2b] Various nickel precursors, monodentate ligands, ^[10] and bases were evaluated for the reaction of **1a** with morpholine (**2a**) in the presence of chlorobenzene at $100\,^{\circ}\text{C}$ (Table 1). We found that formation of a carbon–nitrogen bond occurred at the β position of **1a** when the reaction was conducted with a combination of [Ni(cod)₂] (cod = cycloocta-1,5-diene), PMe₃, and K₃PO₄ (Table 1, entry 1). The reaction afforded β -enaminone **3a** in 86% yield (of isolated product) without significant formation of biphenyl, *N*-phenylmorpholine, or α -phenylated propiophenone (<1%). The choice of a suitable

[*] Dr. S. Ueno, R. Shimizu, Prof. R. Kuwano Department of Chemistry, Graduate School of Sciences Kyushu University 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan) E-mail: ueno@chem.kyushu-univ.jp

Homepage: http://www.scc.kyushu-u.ac.jp/Yuki/main.html
[**] This work was supported by the Global-COE program "Science of Future Molecular Systems". We acknowledge Prof. Tsutomu Katsuki for GCMS analyses.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200900892.

Table 1: Effects	of catalyst and	d base.	
0	+ HŅ	[Ni] (4.0 mol%) ligand (12 mol%)	
Ph H	Ó	PhCl (2.0 mmol)	Pn N
1a	2a	K ₃ PO ₄ (2.0 mmol) dioxane, 100 °C	3a
(0.50 mmol)	(1.0 mmol)	20 h	

Entry	[Ni]	Ligand	Base	Yield [%] ^[a]
1	[Ni(cod) ₂]	PMe ₃	K ₃ PO ₄	62 (91) ^[b]
2	[Ni(cod) ₂]	PBu_3	K_3PO_4	29
3	[Ni(cod) ₂]	PCy_3	K_3PO_4	16
4	[Ni(cod) ₂]	PPh_3	K_3PO_4	< 1
5	[Ni(cod) ₂]	P(OEt) ₃	K_3PO_4	0
6	[Ni(cod) ₂]	PMe₃	KOAc	0
7	[Ni(cod) ₂]	PMe_3	K_2CO_3	0
8	[Ni(cod) ₂]	PMe_3	KOtBu	0
9	[Ni(cod) ₂]	PMe_3	Cs ₂ CO ₃	1
10	NiCl ₂	PMe ₃	K_3PO_4	6
11	[Ni(acac) ₂]	PMe ₃	K_3PO_4	2
12	$[NiCl_2(PMe_3)_2]$	_	K_3PO_4	5
13	$[NiCl(Ph)(PMe_3)_2]$	_	K_3PO_4	68
14 ^[c]	[Ni(cod) ₂]	PMe_3	K_3PO_4	0

[a] Yield based on GC analysis of **3a** (average of two runs). [b] Yield based on GC analysis at 40 hours. [c] The reaction was conducted in the absence of chlorobenzene. acac = acetylacetonate.

phosphane ligand proved crucial for the formation of **3a**. The bulkiness of PBu₃ and PCy₃ (Cy = cyclohexyl) retarded the formation of the carbon–nitrogen bond (Table 1, entries 2 and 3). The use of a less electron-donating ligand exhibited no catalytic activity (Table 1, entries 4 and 5). To our surprise, no formation of **3a** was observed when other bases were used in place of K₃PO₄ (Table 1, entries 6–9). Most nickel(II) precursors did not exhibit catalytic activity for the reaction of **1a** and **2a** (Table 1, entries 10–12), although [NiCl(Ph)(PMe₃)₂] exhibited catalytic activity comparable to that of [Ni(cod)₂]/PMe₃ (compare Table 1, entries 1 and 13). In the absence of chlorobenzene no enaminone **3a** was detected (Table 1, entry 14).

The nickel/PMe₃ catalyst system was effective for the transformation of various ethyl ketones into the corresponding enaminones (Table 2). The β-enaminones **3b–3f**, which have a substituent at the *para* position, were obtained from ethyl ketones **1b–1f** in the presence of the nickel catalyst in high yields (Table 2, entries 1–5). Electron-withdrawing groups brought about an enhancement of the reaction rate, [11] even though the yields of **3e** and **3f** were relatively low. Although unsymmetrical aliphatic ketones **1h** and **1i** contain two reactive sites around their carbonyl groups, the reaction occurred on the ethyl group to afford the corresponding enaminone as the sole product (Table 2, entries 7 and 8). [12] Secondary aliphatic amines **2b–2e** proved to be

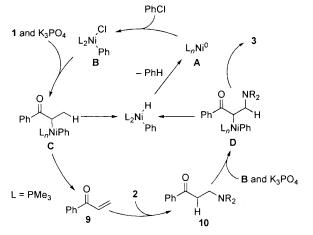
Communications

Table 2: Scope of the nickel-catalyzed formation of a carbon-nitrogen bond.

Entry	R [′] (1)	HNR ₂ (2)	3	Yield [%] ^[a]
1 ^[b,c]	4-Me ₂ NC ₆ H ₄ (1 b)	morpholine (2a)	3 b	80
2 ^[b]	4-MeOC ₆ H ₄ (1 c)	2a `	3 c	93
3	$4-MeC_6H_4$ (1 d)	2a	3 d	98
4 ^[b]	4-FC ₆ H ₄ (1 e)	2a	3 e	78
5	$4-CF_3C_6H_4$ (1 f)	2a	3 f	70
6 ^[b]	1-Np (1g)	2a	3 g	84
7 ^[b]	Cy (1 h)	2a	3 h	53
8 ^[d,e]	<i>i</i> Bu (1 i)	2a	3 i	54
9	Ph (1 a)	piperidine (2b)	3 j	85
10	la ĺ	HNBu ₂ (2 c)	3 k	77
11 ^[b]	1a	HNEt, (2 d)	3 l	58
12	1a	HNBn ₂ (2 e)	3 m	75

[a] Yields of the isolated products 3. [b] The reaction was conducted for 60 hours. [c] The reaction was conducted with 0.3 mmol of $1\,b$. [d] N,N-dimethylformamide was used in place of dioxane. [e] The reaction was conducted with 0.3 mmol of $1\,i$. Np = naphthyl.

successful as the amine substrate in the nickel-catalyzed reaction (Table 2, entries 9–12). However, benzylamine and *N*-methylaniline could not be used in the present reaction.


The exclusive regioselectivity in the reaction of 1h and 1i implies that the present catalysis is ineffective for the reaction of α - and/or β -substituted propiophenones. Butyrophenone, isobutyrophenone, and α -tetralone remained intact after the nickel-catalyzed reaction was carried out for 40 hours. However, the intramolecular formation of the carbon–nitrogen bond of 4 proceeded in the presence of the nickel catalyst, and afforded the piperidine 5 in good yield [Eq. (1)]. The

successful cyclization of **4** indicates that the nickel catalysis is adaptable to the transformation of ketones into α,β -unsaturated ketones by the dehydrogenation of an alkyl chain that is longer than an ethyl group.^[7]

1,3-Diphenylpropan-1-one (6) also failed to be converted into the β -enaminone (<3%), but the reaction afforded a 1:1 mixture of α,β -unsaturated ketone 7 and β -aminoketone 8 [Eq. (2)]. This observation suggests that the catalytic transformation of ethyl ketones 1 into β -enaminones 3 may proceed through the oxidation of 1 to an α,β -unsaturated ketone and the subsequent 1,4-addition of amine, as speculated in our working hypothesis. A possible pathway of the catalytic reaction of 1 is shown in Scheme 1. The nickel(0) species A generated from [Ni(cod)₂] and PMe₃ undergoes an

[Ni(cod)₂] (20 µmol)
PMe₃ (60 µmol)
PhCI (2.0 mmol)

$$K_3PO_4$$
 (2.0 mmol)
dioxane, 100 °C, 40 h
Ph Ph Ph Ph Ph (2)

Scheme 1. A possible pathway for the nickel-catalyzed oxidative amination of 1 with 2.

oxidative addition with chlorobenzene. The resulting $[NiCl(Ph)(PMe_3)_2]$ (B) reacts with deprotonated 1 to form the carbon-bound nickel enolate C, which affords enone 9 through β -hydride elimination. The 1,4-addition of 2 to 9 occurs to form the carbon-nitrogen bond at the β position. The β -aminoketone 10 is converted into β -enaminone 3 through the formation of the nickel enolate D and the subsequent β -hydride elimination, which regenerates the nickel (0) species A and produces benzene. [14]

In contrast to the findings illustrated by Equation (2), phenyl vinyl ketone $\bf 9$ and $\boldsymbol{\beta}$ -aminoketone $\bf 10a$ were rarely observed during the course of the conversion of $\bf 1a$ into $\bf 3a$. This result indicates that the dehydrogenation of $\bf 10a$ to form $\bf 3a$ is much faster than that of $\bf 1a$ to form $\bf 9$. Indeed, preferential consumption of aminoketone $\bf 10a$ was observed in the reaction of the 1:1 mixture of $\bf 1d$ and $\bf 10a$ with the present catalyst system (Scheme 2). Coordination of the $\boldsymbol{\beta}$ -nitrogen atom in $\bf 10a$ to the nickel species may accelerate the formation of the nickel enolate $\bf D$, thus leading to the high substrate selectivity. [15] In the case of Equation (2), the dehydrogenation of $\bf 8$ might be disturbed by the steric hindrance of the $\boldsymbol{\beta}$ -phenyl group.

The β-enaminones **3** prepared here are known to be selectively transformed into β-aminoketones, which are compounds of pharmaceutical interest (Scheme 3). ^[16] The selective hydrogenation of the olefin moiety in **3a** was achieved using NaBH(OAc)₃, ^[17] which gave β-aminoketone **10a** in 71% yield. The nickel-catalyzed transformation of ethyl ketones into enaminones and the subsequent selective hydro-

$$\begin{array}{c} O \\ Ph \\ \hline & 10a \\ (0.25 \text{ mmol}) \end{array} + \begin{array}{c} O \\ Ar \\ \hline & 1d \\ (0.25 \text{ mmol}) \end{array} + \begin{array}{c} [Ni(cod)_2] \ (20 \ \mu\text{mol}) \\ PhCI \ (2.0 \ \text{mmol}) \\ \hline & PhCI \ (2.0 \ \text{mmol}) \\ 2a \ (1.0 \ \text{mmol}) \\ dioxane, \ 100 \ ^{\circ}C \end{array}$$

Scheme 2. A competitive reaction between 10a and 1d.

40 h

Ph H
$$\frac{O}{A}$$
 H $\frac{\text{Table 1}}{86\%}$ 3a $\frac{\text{NaBH(OAc)}_3}{\text{dioxane, RT}}$ Ph $\frac{O}{A}$ N $\frac{A}{A}$ N $\frac{A}{A}$

Scheme 3. Formal amination at the β position of **1a** through nickel-catalyzed oxidative amination.

genation will offer a new protocol for the $\boldsymbol{\beta}$ amination of ethyl ketones.

In conclusion, we have developed a method involving the nickel-catalyzed formation of a carbon–nitrogen bond at the β position of alkyl ketones. To the best of our knowledge, this is the first example of a one-step catalytic bond-formation at the β -carbon atom of saturated ketones.

Experimental Section

General procedure for the nickel-catalyzed formation of a carbon-nitrogen bond: In a nitrogen-filled drybox, a 4 mL screw-capped vial was charged with [Ni(cod)₂] (5.5 mg, 0.020 mmol), K_3PO_4 (424.5 mg, 2.0 mmol), dioxane (0.2 mL). After a magnetic stir bar was added, the vial was fitted with a septum cap, and removed from the drybox. A THF solution of PMe₃ (60 μ L, 1m THF solution, 0.060 mmol), chlorobenzene (0.2 mL, $d=1.106~\rm g\,mL^{-1}$, 2.0 mmol), amine (1.0 mmol), and ethyl ketone (0.50 mmol) were added to the vial. The resulting reaction mixture was heated at 100 °C. The progress of the reaction was monitored by GC analysis. After complete consumption of the starting material, the mixture was diluted with water (1 mL) and extracted with EtOAc (3×1 mL). The organic layer was concentrated, and the crude product was purified by column chromatography on silica gel (eluent: n-hexane/EtOAc 1:1).

Received: February 14, 2009 Revised: April 17, 2009 Published online: May 14, 2009

Keywords: amination \cdot β -enaminones \cdot ketones \cdot nickel catalysis \cdot oxidation

- For representative reviews, see: a) L. Pu, H. B. Yu, Chem. Rev. 2001, 101, 757; b) S. E. Denmark, J. Fu, Chem. Rev. 2003, 103, 2763; c) E. Skucas, M.-Y. Ngai, V. Komanduri, M. J. Krische, Acc. Chem. Res. 2007, 40, 1394.
- [2] For representative reviews, see: a) L. M. Jackman, B. C. Lange, Tetrahedron 1977, 33, 2737; b) D. A. Culkin, J. F. Hartwig, Acc. Chem. Res. 2003, 36, 234; c) B. Schetter, R. Mahrwald, Angew. Chem. 2006, 118, 7668; Angew. Chem. Int. Ed. 2006, 45, 7506.
- [3] Y. Terao, Y. Kametani, H. Wakui, T. Satoh, M. Miura, M. Nomura, *Tetrahedron* 2001, 57, 5967.
- [4] β functionalization of carboxylic acid derivatives utilizing directing groups have been reported: a) R. Giri, N. Maugel, J. J. Li, D. H. Wang, S. P. Breazzano, L. B. Saunders, J.-Q. Yu, J. Am. Chem. Soc. 2007, 129, 3510; b) D.-H. Wang, M. Wasa, R. Giri, J.-Q. Yu, J. Am. Chem. Soc. 2008, 130, 7190.
- [5] Palladium-catalyzed oxidative amination of α,β-unsaturated carbonyl compounds are known, see: a) T. Hosokawa, M. Takano, Y. Kuroki, S.-I. Murahashi, *Tetrahedron Lett.* 1992, 33, 6643; b) J. M. Lee, D. S. Ahn, D. Y. Jung, J. Lee, Y. Do, S. K. Kim, S. Chang, *J. Am. Chem. Soc.* 2006, 128, 12954.
- [6] For palladium-catalyzed aza-Wacker reactions, see: V. Kotov, C. C. Scarborough, S. S. Stahl, *Inorg. Chem.* 2007, 46, 1910.
- [7] a) R. J. Theissen, J. Org. Chem. 1971, 36, 752; b) Y. Ito, T. Hirao,
 T. Saegusa, J. Org. Chem. 1978, 43, 1011; c) Y. Shvo, A. H. I.
 Arisha, J. Org. Chem. 1998, 63, 5640; d) M. Tokunaga, S. Harada,
 T. Iwasawa, Y. Obora, Y. Tsuji, Tetrahedron Lett. 2007, 48, 6860.
- [8] Recently, a catalytic oxidation of saturated ketones into α,β-unsaturated ketones has been achieved by a hypervalent iodine, see: M. Uyanik, M. Akakura, K. Ishihara, J. Am. Chem. Soc. 2009, 131, 251.
- [9] a) T. Mizoroki, K. Mori, A. Ozaki, Bull. Chem. Soc. Jpn. 1971, 44, 581; b) R. F. Heck, J. P. Nolley, J. Org. Chem. 1972, 37, 2320.
- [10] In the nickel-catalyzed α-arylation of ketones, bisphosphane ligands were used to avoid β-hydride elimination, see: a) D. J. Spielvogel, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 3500;
 b) G. Chen, F. Y. Kwong, H. O. Chan, W.-Y. Yu, A. S. C. Chan, Chem. Commun. 2006, 1413;
 c) X. Liao, Z. Weng, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 195.
- [11] See the Supporting Information.
- [12] 3-Pentanone and 3-dodecanone were transformed into the corresponding products in 34% and 31% yields, respectively.
- [13] a) E. R. Burkhardt, R. G. Bergman, C. H. Heathcock, Organometallics 1990, 9, 30; b) J. Cámpora, C. M. Maya, P. Palma, E. Carmona, E. Gutierrez-Puebla, C. Ruiz, J. Am. Chem. Soc. 2003, 125, 1482.
- [14] Consistent with the mechanism in Scheme 1 was the formation of naphthalene in the following experiment by using 1-chloronaphthalene in place of chlorobenzene. When a mixture of **1a** (0.51 mmol), **2a**, and the nickel catalyst was treated with 1-chloronaphthalene (2.0 mmol) at 100°C for 40 hours, naphthalene (0.84 mmol) and **3a** (0.42 mmol) were obtained from the resulting mixture.
- [15] S.-I. Murahashi, Y. Mitsue, T. Tsumiyama, Bull. Chem. Soc. Jpn. 1987, 60, 3285.
- [16] For reviews, see: B. Stanovnik, J. Svete, Chem. Rev. 2004, 104, 2433
- [17] N. R. Irlapati, J. E. Baldwin, R. M. Adlington, G. J. Pritchard, A. Cowley, Org. Lett. 2003, 5, 2351.

4545